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Abstract

Jet noise is a major concern in the design of commercial aircraft. Studies by various

researchers 2-5 suggest that aerodynamic noise is a major contributor to jet noise. Some

of these studies indicate that most of the aerodynamic jet noise due to turbulent mixing

occurs when there is a rapid variation in turbulent structure, i.e. rapidly growing or

decaying vortices.

The objective of this research was to simulate a compressible round jet to study the

non-linear evolution of vortices and the resulting acoustic radiations. In particular, to

understand the effect of turbulence structure on the noise. An ideal technique to study

this problem is direct numerical simulations(DNS), because it provides precise control on

the initial and boundary conditions that lead to the turbulent structures studied. It also

provides complete 3-dimensional time dependent data.

Since the dynamics of a temporally evolving jet are not greatly different from those

of a spatially evolving jet, a temporal jet problem was solved, using periodicity in the

direction of the jet axis. This enables the application of Fourier spectral methods in

the streamwise direction. Physically this means that turbulent structures in the jet are

repeated in successive downstream cells instead of being gradually modified downstream

into a jet plume.

The DNS jet simulation helps us understand the various turbulent scales and mecha-

nisms of turbulence generation in the evolution of a compressible round jet. These accurate

flow solutions will be used in future research to estimate near-field acoustic radiation by

computing the total outward flux across a surface and determine how it is related to the

evolution of the turbulent solutions. Furthermore, these simulations allow us to investigate

the sensitivity of acoustic radiations to inlet/boundary conditions, with possible applica-

tion to active noise suppresion. In addition, the data generated can be used to compute

various turbulence quantities such as mean velocities, turbulent stresses, etc. which will

aid in turbulence modeling.

This report will be presented in two chapters. The first chapter describes some work

on the linear stability of a supersonic round jet and the implications of this for the jet



noiseproblem.

The secondchapter is an extensivediscussionof numerical work using the spectral

method which weuseto solvethe compressibleNavier-Stokesequationsto study turbulent

jet flows. The method usesFourier expansionsin the azimuthal and streamwisedirection

and a 1-D B-spline basisrepresentationin the radial direction. The B-splinebasisis locally

supported and this ensuresblock diagonal matrix equations which can be solved in O(N)

steps. This is a modification of a boundary layer codedevelopedby Robert Moser.

A very accurate highly resolveddirect numerical simulation (DNS) of a turbulent jet

flow is produced.



Chapter 1 : The Linear Stability of a Supersonic Round Jet

Our purpose in doing this stability problem is to provide initial conditions for the

nonlinear computations. We want to start with the most unstable disturbance since this is

what would be found in the natural problem. This problem has been studied by Tam and

Hu(1989) however they didn't present the information which we require. As a result of our

computations we have found some new results which have not been previously reported.

The basic stability equation was obtained by linearizing the equations for inviscid

compressible flow in cylindrical coordinates, taking small perturbations from an axially

symmetric basic state. One can reduce this to a single second order equation for the

pressure perturbation, which is expressed in separation of variables form as

p = f(r) + p(r)e

where r is the radial coordinate. The equation for i5 is

dr----_d2f)+ (lr 4- 2kdE/drw- Ek pldf)dr drrd_+ ((W-a _k)2 k2 - --m2)r'/5 = 0

where fi(r) is the prescribed axial velocity profile, f(r) and fi(r) the prescribed pressure

and density of the base state, and 62(= 7RT) is the square of the sound speed. This

equation agrees with Tam and Hu. This equation is to be solved with boundary conditions

which require the solution to be bounded at r = 0 and to possess only outgoing waves at

infinity. It is an eigenvalue problem for complex w when k and m are given. The flow is

unstable if Imw < 0.

The velocity profile was taken in the same form as in Tam and Hu as a "half-Gaussian"

function which is given by

_--uj r<h

r-h

_= ujexp (- ln2(--_-) 2) r > h



Half - C_ussian jet profile

h=0.9r

h+b=r

....
which is sketched here in order to define the parameters b and h. We define the jet radius

to be rj = b + h and all computations were done with b/rj = .1, h/rj = .9. We have taken

the temperature profile to be of a form similar to the velocity

_'=Tj r<h

÷=- - r>h

and have taken f(r) -- po_, constant across the jet. Then p is related to T by

Poo --/SRT

and

_2 =ai_/Too.

Sometimes in problems likethisthe temperature is related to the velocity profileby the

Crocco-Buseman formula. But thisisa viscous dominated profilewhich resultswhen the

Prandtl number is unity, and it doesnt make a lot of sense for high Reynolds number flows

such as this. In all the work done by us so far we have taken Tj = Too so the temperature

is constant across the jet. This could be called a "warm " jet : the stagnation temperature

has to be high to compensate for expansion cooling.

We have solved this eigenvalue problem by a method described in a book by Betchov

and Criminale. We integrate inward from a large radius, using an asymptotic formula

to identify outgoing waves, and we integrate outward from the origin. Where the two



computations meet we must have i5 and d15/dr continuous. This does not occur unless

oJ has the proper value. We iterate on w using a Newton-Raphson procedure until our

continuity requirement is attained. The biggest problem was that the procedure doesn't

converge unless one starts near the proper value. This means that is was necessary to

change parameters by small increments, starting from a known result.

Results have been obtained for jet Mach numbers of Mj = 2 and 2.5. The result for

M/ = 2 is shown in a figure at the end of this section. Here we present curves of growth

rate versus k for a number of values of m (the azimuthal wavenumber). What is observed is

that the maximum growth rate for given m increases as m increases, reaching a maximum

at m = 4 and then it decreases again as m becomes greater than 4. This means that of

all azimuthal wavenumbers the most unstable wave is m = 4 (and also m = -4 since only

m 2 occurs in the equation). For Mj = 2.5 the maximum is at m = +5.

A wave exp(-ikz - imP) is interpreted as a helical wave on the surface of the jet,

with the wave making an angle tan-l(m/k) with the axis of the jet (m = 0 is an axial

wave). Therefore there are two helical waves of definite angle, one left-handed and one

right-handed, which are the most unstable. This is similar to results of Sandham and

Reynolds (1990) on the stability of a compressible mixing layer. They find two oblique

waves with maximum growth rate which make equal but opposite angles with the flow

direction.

There are some implications of this for our proposed nonlinear computation. Sandham

and Reynolds (1991) in a second paper find a single oblique unstable plane wave rolls up

into an oblique vortex. We expect that a single unstable helical wave will roll up into a

helical vortex. Since our helical waves propagate downstream with a speed which is about

.66 times the jet speed, we expect a similar speed for the helical vortex. A propagating

helix will appear like a rotating helix-as a barber pole does. This is an interesting result

because there are observed jet modes, called spinning modes, where the noise field rotates

around the jet axis, so that to an observer on one side the sound appears to have a time

periodicity(Wesley and Woolley, 1975).

Sandham and Reynolds found that the angle of the most unstable oblique wave de-



pends on the convective Mach number in such a way that Mccosa _- .6, so that the

component of the Mach number perpendicular to the wave stays constant (and subsonic).

We find approximately the same result for the helical waves, based on only two Mach

numbers. In the Sandham-Reynolds nonlinear computations they find that because the

normal Mach number is subsonic the oblique vortex forms without shock waves (unlike

their strictly two-dimensional computations which do have shocks). This is possibly very

significant for our proposed computations. It means that helical vortices could form with-

out shocks. This is important when we use the B-spline/spectral method because any

shocks will have to be resolved by viscosity alone which could restrict our Reynolds num-

ber range.
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Chapter 2 : Direct Numerical Simulation of Unsteady, Compressible Round Jets

Introduction

Jet noise is a major concern in the design of a supersonic transport (SST) aircraft,.

Studies by various researchers 2-4 lead to aerodynamic noise as a major contributor to

jet noise. Some of these studies indicate that most of the aerodynamic jet noise due to

turbulent mixing occurs when there is a rapid variation in turbulent structure, i.e. rapidly

growing or decaying vortices.

The object of this work is to obtain highly accurate flow solutions of a turbulent

round jet. These solutions are expected to help understand the various turbulent scales

and mechanisms of turbulence generation in the evolution of a compressible round jet. We

hope to use these accurate flow solutions to estimate acoustic radiation in the near-field

region. Also the data generated can be used to compute various turbulence quantities such

as mean velocities, turbulent stresses, etc. which may aid in turbulence modeling.

We simulate a compressible round jet by using Fourier expansions in the azimuthal

and streamwise direction and a 1-D B-spline basis representation in the radial direction.

This is an efficient and accurate way to separate out the 0 and z variables, leaving partial

differential equations(PDEs) depending on r and t only. By using a 1-D B-spline basis

and a Galerkin approximation we can reduce this set of PDEs to ordinary differential

equations(ODEs) in time. This is solved by a 3_d order Runge-Kutta time marching

scheme. The present study uses a spectral method developed by Moser et al. 7

We consider the temporal jet problem for two reasons: one since this configuration

allows for the application of highly accurate spectral methods and the other because the

dynamics of the temporal jet is not greatly different from that of a spatially evolving jet.

The spectral accuracy helps capture smaller turbulent scales.

Governing Equations

The compressible Navier-Stokes equations written in cylindrical coordinates in non-

dimensional form are,
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cOa _ _r2 (10(rm_) 10me COmzOt 7 Or + --- +r O0 Oz ]
(1)
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(2)

OP 1 V._'+ (7- 1)_ (3)
0---t + V. Pfi = -(7 - 1)PV. fi + Re P----_ Re

where,
0 0 0 10 0 0

Oxl Or' Ox2 tO0' Ox3 Oz

a= _, mk = p uk, Re---- p_t_,, Pr = _

Re, Pr are the Reynolds number and Prandtl number, Cp is the specific heat at

constant pressure, and • is the viscous dissipation (see Appendix).

B-Spline Representation and Galerkin Formulation

The flow variables are expanded using Fourier sums in the two periodic directions, yiz.

the azimuthal (0) and the axial (z) directions. In the non-periodic or radial direction (r)

we use 1-Dimensional B-splines as interpolating functions. 1 B-splines have local support

and hence lead to sparse block diagonal matrices which can be efficiently stored and solved.

Application of boundary conditions is similar in ease to a finite element method (FEM).

B-splines of order n are piecewise polynomials of degree n having n - 1 continuous

derivatives. Since they have a high degree of continuity derivative quantities (like vorticity)

can be smoothly and accurately represented.

They have 1 degree of freedom(d.o.f) per interval unlike finite element(FE) basis which

can have as many d.o.f as the order of the polynomial. We use B-spline bases because

higher order FE bases may resolve waves of wavelength smaller than twice the interval



length due to the increased d.o.f. But this is beyond the Nyquist cut-off for the interval

size and so these increased d.o.f do not improve the resolution (i.e. the smallest accurately

represented scale) of the solution only thing that gets better is the accuracy (convergence

rate is increased). Higher order B-splines on the other hand not only have better accuracy

but also have better resolution of scales per d.o.f.

The Galerkin method using B-splines as basis functions has been used previously by

some researchers. 5-7 By using a Galerkin approximation we can approximate the set of

PDEs as a set of ODEs in time.

One can use a B-spline basis to represent the desired function f(x) as,

(X)

where,

f(x) = _ aj b_(x) (4)

b_(x) is a n th order B-spline coefficient, aj is the value of function at knot j.

Using a Galerkin approximation we can write, (bk is the weight function)

f bkf(x)dx= _ ajf _jbk_x (_)
J

Also, the derivative of f(x) can be written as,

f'(_) = Z aj b}(x) (6)
J

But here the order of the polynomial has reduced by 1 so in order to keep the degree

of polynomial the same we approximate the derivative as,

Again the Galerkin approximation is written as,
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Any non-linear terms arehandled in a similar way, i.e. if

h=f.g

h = E dj by(x) .._ E aj Ck bj bk

j j,k

j j,k

The matrices (terms with the integral) on the right hand side of equations (5) and

(8) are called the mass and derivative matrices respectively. All different combinations of

such derivatives and other terms are computed as matrices too. These are calculated only

once using a Gaussian quadrature and stored as opposed to a regular finite element (FE)

basis where they can be calculated on the fly when required.

Writing the governing equations in the Galerkin form using the B-spline representa-

tion yields a number of matrices similar to the mass and derivative matrices, non-linear

advection terms yield matrices similar to the non-linear matrix obtained in equation (9).

In Galerkin form the continuity equation can be written for any ks and kz as (ks and

kz are wave numbers in the 0 and z directions respectively),

O---tai E bi bl rdr
l

= E criaj(mrk/R b_bj (rbk)'bl rdrr
j, k, l

+ -_mOk r rdr + cg--_mzk

(10)

where,

= Z k(z,e,t) bk(,-), = F_,mok(z,e,t)
k k

k k

The Fourier terms (eik°e ik" ) are included in the coefficients of the variables. So

ak(z, O, t) = ak(t) Y'_ko _-,k, eik°O+_kzz and so on.

Since we are using 1-D B-splines all the integrals are line integrals over the radius.

These are computed exactly using Gaussian quadratures (doing integrals exactly takes care
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of aliasing). The derivatives in the 0 and z are taken by Fast Fourier Transforming (FFT)

into wave space and multiplying by the appropriate wave numbers ko and kz, and then an

inverse FFT is applied to bring it back to physical space.

The momentum and energy equations can be written in a similar manner.

Ouadratic B-SDlines

Non-Reflectlng Boundary

Jet i

C_utatlonal Domain

Numerical Formulation

Writing the flow equations in a manner as discussed above results in a linear system

of coupled equations to solve simultaneously at each time step. Since these B-splines (of

order n) have local support on n + 1 knot(node) intervals (see fig.l) we get a 2n + 1 block

banded matrix system.

M f = R (11)

where,
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M is the resulting massmatrix, f is the column vector of nodal values we solve for,

and R is a column matrix resulting from the RHS of the governing equations.

Time integration is carried out by a 3 ra order Runge-Kutta scheme.

Regularity Requirements

In the cylindrical coordinate system the origin (r = 0) is source of concern since some

of the functions do not remain analytic as they have a 'r' in the denominator. From a

mathematical point of view the flow variables should be single valued and finite. To enforce

this the polynomial expansion functions must satisfy some regularity requirements, s

The z-component of the velocity should be represented as,

uz(r; m,k) = a(m,k) r Iml Pz(r2; re, k) eim° eikZ

Pz(0; m,k)= 1,

, m = all integers,
(12)

where P,(r2; m, k) is a polynomial in r 2.

Scalars and z-components of all vectors should be represented in a similar manner. The

0 and r-components of the vectors are dependent on each other and should be represented

as,

ur(r; m,k) = b(m,k)r I'_'-1 Pr(r2; m,k)e _ mo e _ k_,

uo(r; re, k) = c(m,k) r ire'-1 Po(r2; re, k) e i mO e _ k_

c(m,k) = ib(m,k) for m >_ 1, (13)

c(m,k) = -ib(m,k) for m <_ -1,

Pr(0; re, k) = P0(0; m,k)=l,

for m = 0 b(m, k) and c(m, k) are unrelated.

Enforcing these conditions gives rise to a set of constraint equations which then replace

some rows in the mass matrix and suitably modify the RHS vector R.

We can obtain the constraint equations as follows, for a quadratic B-Spline and any

scalar u,
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u(r; re, k) = a(m,k) r Iml p(r2; re, k) e i've eikZ, m=all integers,

Only non-zero derivatives allowed are Iml + 2j Vj > 0

For quadratic B-splines (see fig.l), at r--0, 3 splines have support at the origin.

Order of non-zero derivatives for the splines is,

Spline 1 =_ 0, 1, 2

Spline 2 =_ 1, 2

Spline 3 =_ 2

All other splines are zero at r = 0.

Consider spline expansions as _--:_iai bi , where bi are the spline coefficients. We have

in any interval,

E b_ = 1 =_ bl + b2 + b3 = 1
i

Now consider different values of the azimuthal wave number m,

for m=0

Only non-zero derivatives allowed are 0, 2, ... even powers, so all odd powered deriva-

tives should be forced to zero. At r = 0 splines having non-zero first derivative are splines

1 and 2, so,

alb_ + a2b_2 = 0 (14)

form= 1

Only non-zero derivatives allowed are 1, 3, ... odd powers, so all even powered deriva-

tives should be forced to zero. At r = 0 splines having non-zero 0 th and 2 '_d derivatives

are splines 1 and splines 1, 2, and 3 respectively, giving constraints,

al = O, and
(15)

a b" a b"22 + 33:0
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Similarly,

for m=2

Only non-zero derivatives allowed are 2, 4, ... even powers, giving

al = 0, a2 = 0 (16)

and

for m=3

Only non-zero derivatives allowed are 3, 5, ... odd powers, so

al =a2 = a3 = 0 (17)

or, all splines should be zero. For all other values of m we get the same result as (17).

Now equations (14-17) are the constraint equations which will replace the appropriate

rows in the matrix M and vector R.

Before replacing rows which actually contain the physics of the flow care has to be

taken to see that no information is lost. So, we need to take a linear combination of those

rows to be replaced and add them to the remaining rows in a particular manner. For this

the null space of the constraint equations has to be computed and the eigenvectors of this

space are to be used for the linear combination. This is done as shown below.

foropol=7andm=l

The first set of rows in the mass matrix are written as,

m ! --

1 0 0 0 0 0 0

* * * * * * *

o b_ b_ 0 0 0 0
* * * * * * *

o b_ bl bl b_ o o
* * * * * * *

o b_ b_ b_ b_ b_ b_

The rows with .'s are the unconstrained rows and the b} are the bspline derivatives.

Now to choose a set of null vectors Xj such that,

m'Xj =0 (18)
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Let us choose

Zj

(o o
1 0 0

Xll 0 0

0 1 0

X12 X21 0

0 0 1

_X13 X22 X31

So we can compute the null vectors using equation 18.

Now the mass matrix M is modified by using the null vectors for linear combinations

as_

row2 = row2(original) + xll * row3 + x12 * row5 + x13 * row7

row4 = row4(original) + x21 * row5 + x22 * row7

row6 = row6(original) + x31 * row7

This has to be done for all values of the azimuthal wave number m.

This procedure can similarly be applied to all the flow vectors and scalars appearing

in the vector f. The derivation of constraints is similar for higher order splines.

CFL and Modal Reduction

Another concern arising due to a cylindrical mesh is that near the origin the aspect

ratio of the cells gets very high, so we have to reduce the number of azimuthal modes

near the origin to maintain a good CFL number. This we will call mode suppression. So

we effectively reduce the number of azimuthal modes to 1 near the origin and increase it

successively such that at the outer boundary we have all the azimuthal modes.

This reduces the accuracy but helps us increase the time-step, dt, by a significant

amount. Another advantage of doing this is that the computational domain in Fourier

space is significantly smaller thus allowing faster computations, i.e. For lower azimuthal

wave number x, the computations have to carried out for more radial points, but as x

increases fewer radial points have to be considered. Another way to look at it would be

near the origin fewer x loops need to be considered.
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This is to be implementedby making the upper bound of the x-loops to be dependent

on y, i.e. x= 1 to nx-modified[y] if the y-loop is the outer loop, or making the lower bound

of the y-loop dependent on x if the x-loop is the outer loop, i.e. y = ny-min[x] to ny.

Optimizations

The code was optimized thus,

• Moved all major computations (rhs of governing equations) to separate subroutines

thus reducing the load on the main program and enabling it to be unrolled and vec-

torized more efficiently.

• Manually unrolled the quadrature sum loops. This helped in decreasing the number

of operations by eliminating a lot of repetitive computations due to proper regroup-

ing. Similar and symmetric matrix multipliers were regrouped together thus reducing

redundant calculations.

• Vectorizing over larger loops.

Following the above procedure has helped reduce the time taken per mode per Runge-

Kutta step considerably.

Boundary conditions

Ideally, the computational domain should mimic the physical domain by including

all free space and only having physical boundaries. But this is not possible and the

computational domain has to be finite. So we need artificial boundaries to limit the

computational domain. But we want these artificial boundaries to be invisible to the

flow field so that vortices and other waves can pass through these boundaries and leave

the domain without giving rise to spurious reflection waves. So we need non-reflecting

boundary conditions (NRBCs).

In solving a temporally evolving jet the inflow-outflow boundaries are made periodic

(see fig 2). This might not be very accurate but serves the purpose of studying turbulence.

Also it takes care of the inflow-outflow boundary conditions. This also enables us to use

a spectral expansion in the axial direction. So the only boundaries of concern are the

17



transversenumerical boundaries. If we havegood boundary conditions we can make the

computational domain smaller and thus get a higher resolution and compute finer scales.

Several investigators 9-14 have studied and used different types of non-reflecting

boundary condtions. Engquist and Majda 12,13study the wave equation and develop

a perfectly non-reflectingboundary condition usingpseudo-differentialoperators. But this

equation is non-local in both spaceand time and is of little use for computational pur-

posesas we would haveto store data on the boundary from previous time-steps. But by

approximating the operator they also developa hierarchy of approximate NRBCs , with

the increasingaccuracy in passingobliquely incident waves.

We usethe first order non-reflectingboundary conditions for outflow at the transverse

boundary, which can also be derived from physical considerationsusing 1-D Riemann

Invariants. The outflow boundary condition is,

- p coo ur - (19)

where R is radius of outer boundary, and the primed quantities represent the pertur-

bations from mean flow and the cx_ quantities represent free stream or mean flow. The

term on the right hand side is a correction for a cylindrical boundary.

This boundary condition is supposed to ensure that there are no incoming waves from

infinity. It works well for directly incident waves. We think that this will serve the purpose

since we would have nearly cylindrical wavefronts incident on the boundary which is also

cylindrical. In addition we hope to mitigate the outgoing wave amplitudes by coarsening

the mesh gradually as we approach the boundary as was done in the 2-D preliminary work.

Now to implement this boundary condition in our scheme we have to transform the last

set of equations, which represent the physics at the boundary, to characteristic variables

at each substep of the Runge-Kutta algorithm.

This is done using the following transformation matrix from Giles. 9

18



2 2

I I c°°°i)Ic2 p oocoo ue co¢ 0 0 _me

2 ] 6m,.C 3 = --poocc_Ur 0 --Coo 0

2 _ 5mzC 4 pcx)Ccx:_Uz 0 0 Cc_ z

c5 p_co_u,. 0 ca 0 \ @

(20)

where the ci's are the characteristic variables and the 5-quantities are time incremental

quantities.

So we can modify the last five rows of the mass matrix and the right-hand-side using

the above transformation.

Equation 19 can be written as

Coo !

-p_c_ur&r - c_Smr + 6p -- _-Rp (21)

So to implement the above b.c. we have to replace the third of the last five rows

including the right-hand-side by the above equation since the third characteristic c3 has

the right form for the b.c.

19



Test Case : Spherically Radiating Flow in a Cylindrical Domain

A few simple test cases were run to validate the code and for diagnostic purposes. In

all cases the desired steady state solutions were obtained to machine accuracy. Here we

present a case to test the non-reflecting b.c's.

Fig. 3

We consider a spherically radiating point source flow placed at the center of a cylin-

drical domain. The solution is singular at the origin and is therefore picked up after a

finite time and is treated as an initial value problem. This test case is very robust, since

there exists an exact time-dependent solution with which we can compare our results. This

test case not only tests the non-reflecting boundary conditions but also validates the entire

code.

The radiating bubble is considered as a perturbation to the mean flow which is,

P= _, a= l, ur =Uz=Ue--O

The perturbation is taken as a point source solution of the linear wave equation which

is written as a velocity potential O(t - _). Where x = v/_+ z 2, c is sound speed, and t

is the time. • can be any function.

We have used a cubic function( a gaussian function has also been tried) for _,

2O



= { -l(t -  )3(tl - t +
0

The function is plotted below.

c(t-tl) < x < ct

otherwise

0

0.0 Xc(t-t_) ct

Fig. 4

The fundemental perturbations are expressed in terms of the velocity potential as,

00

p'= -po_ Ot

_71 = _pl

O0
I

ttr = -_r

]

u 0 =0.

0¢
I

ttz : "-_-'_"Z

Plotted below are the density profiles as time progresses. The dotted profiles which

almost overlap the solid lines are the exact solutions. From the plots we can see that

the non-reflecting conditions work fairly well. The waves which are incident normally

pass through the artificial boundaries with little or no reflection. In figures 5 and 7 the

plots with t = t3 show a weak reflected residual wave. This is as expected since the non-

reflecting conditions are exact for normally incident waves, but oblique waves would cause

some reflection.
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A more general test casewas done by shifting the origin of the point source off the

z-axis. So the flow is not symmetric anymore and u_ is not zero. This allows more

azimuthal modes and also the the waves reaching the boundary are not normal incident

anymore. This also validates the flow solver. Figure 8 shows very minimal reflection for

the off-centered test case.
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a0 a2

Fig. 5

I

• o o's
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::l
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Fig. 6

22



i

' i

,-,, q-t,

Fig. 7

Density Contours for off-centered point source (r-e plane)

Fig. 8
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Preliminary Results for M -- 2 Jet

A preliminary computation with a coarse mesh (64*67*32) was done for M = 2 jet.

The initial conditions were taken to be a "half-Gaussian" velocity profile super-imposed

with a combination of the most unstable eigenfunctions of the stablility problem. We have

a single helical mode with ke = 4 and kz = 3. This makes the jet length to be about 2.1

times the jet radius. The Reynolds number based on the jet radius and velocity of sound

for this simulation is 2500.

Since we use instabilities in the azimuthal direction which have a wave number of 4 the

ensuing flow will have structures which are multiples of 4. So the quarter domain problem

can be solved, since there is quadrant symmetry. This was verified in the preliminary run

to ensure the validity of the code.

Below are presented the results of a quarter domain simulation on a relatively coarse

mesh (32*67*84). So that is 32 modes in the azimuthal direction but over a quarter

domain. The Jet unperturbed velocity is M -- 2. The Re is still 2500. The simulation was

stopped when undamped delta waves begin to grow. At present we are working on a filter

to remove these spurious waves.

The energy spectrum is plotted versus the axial and the azimuthal wave numbers.

The plots show a wide spectrum of energy. The initial conditions had energy only in the

kz = 1 and ke = 1 modes. This indicates that the energy has been cascaded to other

modes as the jet developed. So as expected a wide range of scales can be observed. The

solid line shown is the k -5/3 spectrum. So we get a decade of k -5/3 spectrum. Better

resolution gives us better agreement with the k -5/3 spectrum.

Figure 11, below shows the growth in the mean thickness of the shear layer at different

times of the simulation. We observe a four-fold increase in the shear layer thickness from

initial to the final time at which the simulation was stopped.

Shown in figures 12 and 13 are cross-sectional plots of the three components of ve-

locity, vorticity and the pressure and density at the final time (t = 6.564). The formation

of spiral structures is also visible. A flow that was initially laminar develops turbulent

structures. A higher resolution simulation would help capture the smaller scales better.
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Plot of u z vs radius
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Shown below is a reconstruction of the jet by placing adjacent to each other flow

solutions at different times. The phase velocity was taken to be the velocity with which

the disturbances traverse the domain in the axial direction. So the plots adjacent are taken

at time intervals equal to the time it takes the disturbances to travel the domain length.

We do see some discontinuity at the zonal boundaries since they are not exactly at the

time intervals desired. But the picture looks good enough for us to conclude that such

a reconstruction could be used not only to see the jet structure and growth but also to

compute the near field acoustic signature. The flow quantity plotted is the total vorticity

magnitude. It is evident from the plot that the initially sharp shear layer grows thicker

and has a more varied structure showing the growth and development of helical vortices.

Plotted above the jet is the total pressure energy (p • ur) (or the energy outflux)

radiated through a cylindrical shell , chosen to be r = 3 in this case. This gives a rough

estimate of when acoustic energy was radiated. From the plot we see that there is a sharp

rise in the energy flux after t = 2. This is when the initial disturbances in the shear layer
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propogate to r = 3. Also around t = 4 there is another fluctuation which is due the growth

and non-linear interactions. The energy outflux increases as we proceed in time indicating

that acoustic emissions are now due to the tubulent behavior of the jet. There is growth of

helical vortices. We also expect to some sharp fluctuations in the plot when the breakdown

of the helical vortices occurs. So a direct correlation can be drawn between the flowfield

and the affected energy flux. Bearing in mind that what happens at the shear layer (r =

1) takes another 2 units of time to reach the location r = 3 at which the energy flux is

computed.

Energy outflux vs time ( at r = 3)
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Fig. 14 : Vorticity magnitude at different times and the total energy flux associated with this flow
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Appendix

The compressible Navier-Stokes equations in cylindrical coordinates

Op 10(rpu_) 10(puo) O(pu_)
--+ + +
Ot r Or r O0 Oz

-- 0 (A.1)

P ( DurDt

P ( Duo_+--

u_ _ OP cOTr_ 1 cO7_o Ov_z T_,. -- TOO
r ) -- Or +---_-r +--+ +r O0 _ r

u,.uo _ 10P Oro,. 10TO0 OTOz TrO

r ) - rO0 +-_-r +--+ +
2

r O0 _ r

Du_ OP Orzr 1 0_ _o OTz_ rz_
P Dt Oz +_ +-r-O0 +-_z +--r

where

T=#
2( °--_u - IV .11)

k Or 3 ]
l Ou_ -- 0 _ uo X
; oo _r_( _ )

o__ + o_0___
Or Oz

lO_ru t rO(UrO )r O0

- 5V.d)

o___ + ! o___u
Oz r O0

Or -- O z

Oz -- r O0 -_2(_- _v.u)

D 0 0 uo 0 O

Dt - Ot + u_ O--r+ --r --00 + Uz --Oz

10rur 10uo Ouz
V._ - +---+--

r Or r O0 Oz

# is the viscosity,

(A.2)
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0_ is the heat flux, T is the temperature, _ is heat conductivity,

(A.3)
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and (I) is viscous dissipation given by,

(,0Ur,2 10Uo U,,)2 ,0U_, 2)="(2,,t-bT) + (;-b-0-+ -;-- +/--g7)

10uz Ouo ] 2 Ou,. Ouz , 2 10u,.+ (-;--N-+ -52z, + (-5; + -5V) + (;-SV +
O?_t0

Or
")1

31



Acknowledgements

This work is supported by a NASA Ames grant NASA/NCC2 - 5156. We also ac-

knowledge the support of the Minnesota Supercomputer Institute.

32


